名称 |
PK-15猪肾细胞系(种属鉴定) |
货号 |
ZQ0516 |
产品介绍 |
PK-15细胞建系于1955(Stice,E)。是PK-1a细胞的克隆系。该细胞系可用于多种病毒的增值及特性研究。另外,电镜观察发现,PK-15细胞内有C-型病毒颗粒存在,是研究C-型病毒的材料。 |
种属 |
猪 |
组织来源 |
肾 |
形态学 |
上皮样 |
细胞类型 |
自发永生化细胞系 |
倍增时间 |
12.1 +- 0.7 hours (PubMed=17889922); ~25 hours (DSMZ=ACC-640) |
生长方式 |
贴壁 |
培养基和添加剂 |
MEM(品牌:中乔新舟 货号:ZQ-300)+10%FBS(中乔新舟 货号:ZQ500-A)+1%双抗(中乔新舟 货号:CSP006) |
推荐完全培养基货号 |
|
生物安全等级 |
BSL-1 |
培养条件 |
95%空气,5%二氧化碳;37℃ |
保藏机构 |
ATCC; CCL-33 BCRC; 60057 BCRJ; 0355 CCLV; CCLV-RIE 0005 CCTCC; GDC0061 CLS; 607426 DSMZ; ACC-640 IZSLER; BS CL 72 JCRB; JCRB9040 KCB; KCB 2010002YJ KCLB; 10033 RCB; RCB0534 |
供应限制 |
仅供科研使用 |
货号 |
ZQ0516 |
发货规格 |
活细胞:T25培养瓶*1瓶或者1ml 冻存管*1支(细胞量约为5 x 10^5 cells/vial)二选一 |
发货形式 |
活细胞:常温运输;冻存管:干冰运输 |
储存温度 |
活细胞:培养箱;冻存管:液氮罐 |
产地 |
中国 |
供应限制 |
仅供科研使用 |
论文标题: Toxoplasma gondii induces MST2 phosphorylation mediating the activation of hippo signaling pathway to promote apoptosis and lung tissue damage
DOI: doi.org/10.1016/j.isci.2024.111312
发表时间: 2024-12-20
期刊: iSCIENCE
影响因子: 4.6
货号: ZQ0516
产品名称: PK-15猪肾细胞系
原文链接:https://doi.org/10.1016/j.isci.2024.111312
PubMed=5962858
Pirtle E.C.
Variation in the modal chromosome number of two PK-15 porcine kidney cell lines.
Am. J. Vet. Res. 27:747-749(1966)
DOI=10.1007/BF02618370
Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
The animal cell culture collection.
In Vitro 5:1-16(1970)
PubMed=4132403; DOI=10.1016/0042-6822(74)90141-X
Todaro G.J., Benveniste R.E., Lieber M.M., Sherr C.J.
Characterization of a type C virus released from the porcine cell line PK(15).
Virology 58:65-74(1974)
PubMed=4151202
Tischer I., Rasch R., Tochtermann G.
Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines.
Zentralbl. Bakteriol. Orig. A. 226:153-167(1974)
PubMed=6160900
Fulton R.W., Pearson N.J.
Interferon production by bovine tracheal organ cultures infected with bovid herpesvirus 1 strains.
Can. J. Comp. Med. 44:447-452(1980)
PubMed=6988327; DOI=10.1007/BF02831503
O'Brien S.J., Shannon J.E., Gail M.H.
A molecular approach to the identification and individualization of human and animal cells in culture: isozyme and allozyme genetic signatures.
In Vitro 16:119-135(1980)
PubMed=3009166; DOI=10.1507/endocrj1954.32.819
Kinoshita Y., Fukase M., Takenaka M., Nakada M., Miyauchi A., Fujita T.
Calcitonin-responsive clonal cell line from porcine kidney (PK(15)) in serum-free medium.
Endocrinol. Jpn. 32:819-828(1985)
PubMed=3173126
Buonavoglia C., Falcone E., Pestalozza S., Iovane G., Rivero V.B.
Susceptibility of a minipig kidney cell line (MPK) to hog cholera virus.
Microbiologica 11:263-264(1988)
PubMed=2686830
Dulac G.C., Afshar A.
Porcine circovirus antigens in PK-15 cell line (ATCC CCL-33) and evidence of antibodies to circovirus in Canadian pigs.
Can. J. Vet. Res. 53:431-433(1989)
PubMed=15731278; DOI=10.1128/JVI.79.6.3846-3850.2005
Mossel E.C., Huang C., Narayanan K., Makino S., Tesh R.B., Peters C.J.
Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication.
J. Virol. 79:3846-3850(2005)
PubMed=17889922; DOI=10.1016/j.virol.2007.08.014
Zhu Y., Lau A.H.-L., Lau J.S.-K., Jia Q., Karuppannan A.K., Kwang J.H.-S.
Enhanced replication of porcine circovirus type 2 (PCV2) in a homogeneous subpopulation of PK15 cell line.
Virology 369:423-430(2007)
PubMed=19508353; DOI=10.1111/j.1744-313X.2009.00853.x
Ho C.S., Franzo-Romain M.H., Lee Y.J., Lee J.H., Smith D.M.
Sequence-based characterization of swine leucocyte antigen alleles in commercially available porcine cell lines.
Int. J. Immunogenet. 36:231-234(2009)
PubMed=19937495; DOI=10.1080/10495390903139950
Uebing-Czipura A.U., Dawson H.D., Rutherford M.S., Scherba G.
Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb.
Anim. Biotechnol. 20:186-215(2009)
PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)
PubMed=24398227; DOI=10.1016/j.vetmic.2013.12.001
Lithgow P.E., Takamatsu H., Werling D., Dixon L.K., Chapman D.
Correlation of cell surface marker expression with African swine fever virus infection.
Vet. Microbiol. 168:413-419(2014)
PubMed=26456528; DOI=10.1126/science.aad1191
Yang L.-H., Guell M., Niu D., George H., Lesha E., Grishin D., Aach J., Shrock E., Xu W.-H., Poci J., Cortazio R., Wilkinson R.A., Fishman J.A., Church G.M.
Genome-wide inactivation of porcine endogenous retroviruses (PERVs).
Science 350:1101-1104(2015)
PubMed=31216434; DOI=10.1016/j.jviromet.2019.113682
Li Y.-Y., Wang Y.-J., Zhou X.-H., Zhang X.-K., Zhang X.-Y., Xia X.-L., Sun H.-C.
Generation of PK-15 cell lines highly permissive to porcine circovirus 2 infection by transposon-mediated interferon-gamma gene transfer.
J. Virol. Methods 271:113682.1-113682.6(2019)
PubMed=32258794; DOI=10.2478/jvetres-2020-0020
Yin M., Hu D.-F., Li P., Kong L.-Y., Ning H.-M., Yue F., Jiang J.-Q., Wang X.-N.
Cloning and identification of PK15 cells for enhanced replication of classical swine fever virus.
J. Vet. Res. 64:9-14(2020)
PubMed=34737324; DOI=10.1038/s41598-021-00779-5
Lung O., Candlish R.C., Nebroski M., Kruckiewicz P., Buchanan C., Moniwa M.
High-throughput sequencing for species authentication and contamination detection of 63 cell lines.
Sci. Rep. 11:21657-21657(2021)